-Un corps matériel soumis à aucune force se déplace en ligne droite à vitesse constante (qui peut être nulle).
-Un avion qui vole en ligne droite à vitesse et altitude constante n'est soumis à aucune force, plus précisément les différentes forces qui s'appliquent sur lui s'annulent:
- la portance annule le poids.
- la traction du moteur annule la traînée.
La résultante des forces aérodynamiques qui s’appliquent sur l’aile, et qui résulte du déplacement du profil de l’aile dans l’air est perpendiculaire à la surface de l’aile. Elle se décompose vectoriellement en :
- une force verticale, vers le haut -> la portance.
- une force horizontale, vers l’arrière -> la traînée.
Pour obliger l’avion à prendre un virage à altitude constante, il faut en permanence le tirer vers le centre de la trajectoire circulaire.
On y parvient en inclinant l’aile sur le côté (en roulis ) ce qui incline également la force résultante sur l’aile, dont la décomposition vectorielle fait apparaître une nouvelle composante horizontale perpendiculaire à la trajectoire, vers le centre de la trajectoire, ce que l’on souhaite, mais diminue la composante verticale, la portance. Il faut alors, pour éviter que l’avion ne descende, augmenter cette portance en augmentant les gaz → augmentation de la vitesse → augmentation du module de la résultante des forces aérodynamiques → augmentation de la portance (et de la traînée).
Lorsque l’avion se déplaçait suivant une ligne droite en vitesse et altitude constantes, le pilote ne ressentait que son poids qui est le produit de sa masse (en kg) par l’accélération de la pesanteur (dirigée vers le centre de la Terre) suivant la formule P=mG. (plus exactement il ressentait la force que la structure de l'avion (le siège) exerce vers le haut sur son postérieur et qui contrebalance son poids, en effet, en chute libre on ne ressent rien du tout (sauf le vent relatif), et en particulier on ne ressent plus son poids).
Lorsque l’avion suit une trajectoire qui tourne dans le plan horizontal, en vitesse et altitude constantes, le pilote ressent maintenant une force égale au produit de sa masse (en kg) par l’accélération résultante (plus exactement... voir plus haut).
Cette accélération résultante et la somme vectorielle de l’accélération de la pesanteur qui n’a pas changé et de l’accélération centripète. Oui centripète, pas centrifuge !! Un corps qui se déplace à vitesse linéaire constante suivant une trajectoire circulaire voit sa vitesse changer constamment. Pas le module de sa vitesse, qui par hypothèse est constante, mais la direction de sa vitesse qui tourne en permanence. Et une force qui varie c’est une accélération.
Voici la démonstration mathématique (faire dérouler le PDF...):
- Cette démonstration en pdf -> 01.pdf (au cas où elle ne s'afficherait pas dans le cadre ci-dessus, par exemple sur certains navigateurs Androïd)
Pour que le pilote suive la même trajectoire que l’avion, qu’il ne continue pas en ligne droite ( !) il faut le contraindre à effectuer cette accélération centripète (gamma) en lui appliquant une force (F en N) horizontale dirigée vers le centre de la courbe, c.a.d perpendiculairement à la trajectoire. L'accélération centripète (gamma en m/s²) n'est pas la cause, c'est la conséquence. La cause c'est la force centripète (en N) appliquée par la structure de l'avion sur la masse du pilote. Si l'avion était une sorte d'hologramme immatériel, n'agissant pas sur le pilote, ce dernier continuerait effectivement en ligne droite dans le plan horizontal. (et descendante dans le plan vertical !)
La deuxième loi de Newton, dite aussi "principe fondamental de la dynamique" (en abréviation, PFD, tiens, tiens...) dit que gamma = F/m avec gamma et F alignés et dans le même sens.
Nous obtenons donc comme conséquence de la force appliquée latéralement par l'avion sur la masse du pilote -> une accélération gamma = F/m dirigée vers le centre de la trajectoire courbe.
Deux choses concernent donc le pilote :
- son poids = au produit de sa masse (en kg) par l'accélération de la pesanteur (9.81 m/s²) dirigée vers le centre de la Terre.
- et notre force F latérale.
Ce que ressent le pilote c'est la résultante (la somme vectorielle) entre :
- La force que la structure de l'avion (le siège) exerce vers le haut sur son postérieur et qui contrebalance son poids.
- et notre force latérale.
Remarque : Vous ai-je parlé de "force centrifuge" ? NON parce que ça n'existe pas ! C'est un truc sans doute inventé par les gangsters qui tirent par les portières des voitures en virage (enfin c'est comme ça au cinéma)... Si vous faites tourner une pierre au bout d'une ficelle et que la ficelle se casse, la pierre continuera avec une trajectoire rectiligne TANGENTE au cercle (et pas radiale ! TANGENTE !!! Ok ?)
Cette résultante est un peu plus grande en module que le poids seul, mais surtout elle est dirigée vers le haut, mais inclinée vers le centre de la trajectoire.
..et cette inclinaison est égale à celle de l'avion de sorte que pilote ne ressent pas de force latérale, il se sent juste un peu plus lourd. Mais ça, cette augmentation du poids, lorsqu’on est bien calé sur son siège, ça passe presque inaperçu. (Plus exactement c'est le cas lorsque l'avion est correctement piloté, voir plus bas).
C’est la raison pour laquelle, lorsque l’avion tourne de jour par beau temps, la vue de l’horizon réel ne permet aucun doute sur le fait qu’on tourne. MAIS sans visibilité (dans le brouillard, les nuages, ou de nuit sans lune au dessus de la mer loin des côtes …) on peut très bien se trouver en virage sans s’en rendre compte, ce qui est extrêmement dangereux du point de vue de la perte de l’orientation et de la trajectoire mais également du fait que l’augmentation des forces sur la structure de l’avion peut occasionner des dégâts.
Mais alors, pour détecter le fait qu’on est incliné et qu'on tourne, un simple fil à plomb ne suffit-il pas ? Eh bien non justement. Le fil à plomb va bien s’incliner mais suivant la somme vectorielle de l'accélération de la pesanteur et l'accélération latérale. Et cela donne le même angle que l’inclinaison de l’avion et de son pilote. Il restera de ce fait perpendiculaire au plancher de l’avion (pas celui des vaches !!). C'est vrai si l'avion est bien piloté, et d'ailleurs il existe un instrument de bord, la bille, qui permet de vérifier cela (C'est l'équivalent d'un fil à plomb). Oui un avion peut voler avec une résultante des forces aérodynamiques qui ne soit par strictement perpendiculaire à l'aile, du fait de la surface de son fuselage et des empennages, mais c'est la chose à éviter en temps normal. (Toutefois la bille seule ne dit rien sur l'assiette latérale de l'avion par rapport à l'horizon).
Un horizon artificiel ne peut donc pas être basé sur une simple masselotte qui se dirigerait vers "le bas". Un horizon artificiel doit donc garder la mémoire de l’orientation de la verticale terrestre (mémorisée au sol avant de décoller) durant tout le vol. Et ça, les gyroscopes savent le faire.
Un gyroscope mécanique est composé d’une masse en rotation rapide (toupie qui garde une orientation constante) montée sur double cardan. Je vous fait grâce de la démonstration mathématique et de la force de Coriolis :)
La puce électronique MPU6050 comprend des accéléromètres et gyroscopes en micro-mécanique (MEMS) de précision nanométrique. Un bijou de technologie ! Toutefois, pour la fonction gyroscopique, il n’y a pas de pièce en rotation rapide et continue. La puce détecte des accélérations circulaires, reste à en déduire l’angle de rotation par intégration mathématique.
"MPU6050 Gyroscopes do NOT report angles, they report the speed at which the device is turning, or angular velocity. In order to get the angle position you have to integrate it over time. " (voir les liens ci-dessous)